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Hierarchical Equations of Motion

Using an underdamped spectral density, J (w), it is possible to derive* an hierarchy of equations of
motion which can account for non-Markovian memory effects in the OQS. The hierarchy of ADOs
has significant power over the dynamics: red terms represent Markovian dynamics of the free
propagation of the system, blue terms describe non-Markovian free propagation of the bath, the
orange highlighted terms behave similar to ‘lowering” from higher ADOs and the cyan behave like
‘raising’ from lower ADOs.
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