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Spectral Densities

The bath is defined?! as a linear combination of

We define a full molecular Molecules in the system of This system is then evolved through time in | |
system, in stages of increasing interest are free to interact density matrix form. Further interactions are delta functions corresponding to an ensemble of
complexity, starting with the with other particles, termed defined through introduction of the Lagrangian. environment modes. The profile is taken as a

continuous spectral density function.
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Deriving Hierarchical Equations of Motion

Path integration splits the Lagrangians into . . . . :
: P grans Different hierarchical equations of motion can be

Hit = Hs(X)+ H Hgp(X, . | )
tt R — exponentials of actions,” corresponding to the derived by inputting different forms of function
influence of each component of the OQS on the yinp 5 :
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We finally resolve individual memory components ot Fig 7: The equivalent
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Two-time Correlation Functions Results: Correlation Functions of a Monomer

In order to better understand non-classical, coherence behaviours we apply statistical
rrelation functions. From th red light field w n pr wo orders of two tim : . :
correlation functions. From the scattered light field we can produce two orders of two time gél)('r), scanning A gt(,l)('l'), scanning A e FEirst Order

correlation function. Expectation values of two-time products of a) n=0cm™1 “Jayn=0cm=? The g,!) tracks the population of the excited state

a'(t) exp(ik - r) operators cannot be simply computed, but can be when there is no bath. As bath reorganisation
reformulated using the Quantum Regression energy increases the rabi oscillations are damped

formula of Lax et al.# more strongly. g,!) is constant in the steady state

For an arbitrary operator, C, (where here we use | | and without bath influence and increases linearly

(2) — /B — i+ o+ -1
g7(r) = (E-OE"E+7ET(¢+7)E"()  reation and annihilation of photons ‘@’ and ol? ”j?\ [\ A / . with system excited state displacement.

Tr [C exp(£7)(oC1) phonon§ ‘b’) the.reformulated orders of |
_ T (Co0T , corrfelat|on fL{nctlon are.shown. v v \/
If D is an equivalent arbitrary operator then we : : .  Second Order

d@(t,) = Ir [CTCGXP(LT)QCPCT)] . can produce a cross-correlation®’ for multiple R p— g.?) amplitudes are dependent on g,(*) and, with

Tr(CpCT) particle types. These equations® are used in ' \ /\ /\ /\ / ' the exception of n=0, increase in damping with A.
6@ (t,7) = Tr [CTC exp(LT)(DpD?)] conjunction with HEOM dynamics along times t . . g.?) follows the same trend as its first order

Tr(CpCT)Tr(DpD') and T ps. counterpart, but mode frequency is more evident.
| ' | The cross correlation functions have the behaviour

t T °
of the initial mode superimposed on the latter.
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where the excited state can be - _ -
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Fig 12: Second order two-time correlation functions for photons and phonons, and the two forms of the cross-correlation function.
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