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Future ResearchSummary References
Many types of HEOM can be derived from different spectral densities in order to 
have fine control over the damping and memory effects. Additionally, photons 
and phonons appear to be significantly influenced by the presence of an 
external bath. Finally, the cross-correlation functions show considerable 
possibility for bunching and anti-bunching of photons and phonons.   This 
research was carried out on the ADA Cluster supported by the Research and 
Specialist Computing Support service at UEA.
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• Next we intend to finish development of a full derivation of our 
own HEOM method.

• How two-time correlation functions are impacted by increasing 
non-Markovianity.

• Study of virtual information transfer within the hierarchy 
structure.

Spectral Densities
The bath is defined1 as a linear combination of 
delta functions corresponding to an ensemble of 
environment modes. The profile is taken as a 
continuous spectral density function. 

Different hierarchical equations of motion can be 
derived by inputting different forms of function.

Fig 6: Showing the underdamped spectral density based 
on work by Fujihashi et al3 and how its components are 
subsumed. The orange, as in the flow charts, is 
overdamped, yellow underdamped, and purple the 
intramolecular vibration.

Fig 7: The equivalent 
overdamped spectral 
density. It is a 
redshifted Gaussian 
profile for an ensemble 
of delta functions.

Fig 8: Depicting 
Markovianity, showing 
state history 
dependence in 3D. 

Different spectral 
densities impart 
different magnitudes of 
non-Markovianity to 
their HEOMs, relative 
to the damping 
strength.

Two-time Correlation Functions
In order to better understand non-classical, coherence behaviours we apply statistical 
correlation functions. From the scattered light field we can produce two orders of two time 
correlation function. Expectation values of two-time products of 

operators cannot be simply computed, but can be 
reformulated using the Quantum Regression 
formula of Lax et al.4

For an arbitrary operator, C, (where here we use 
creation and annihilation of photons ‘a’ and 
phonons ‘b’) the reformulated orders of 
correlation function are shown. 
If D is an equivalent arbitrary operator then we 
can produce a cross-correlation6,7 for multiple 
particle types. These equations8 are used in 
conjunction with HEOM dynamics along times t 
and 𝛕 ps.  

A model monomer system:

A simple molecular system is chosen 
as a test case. A two level system, 
where the excited state can be 
displaced. This is evolved through 
the HEOM and, after initialisation, a 
continuous field drives the system. 

We run a series of models for 
different values of the bath and 
system reorganisation energies 
𝛈 and 𝛌.

Fig 9: Schematic showing evolution time, states of the density matrix, 
and the continuous driving field.

We define a full molecular 
system, in stages of increasing  
complexity, starting with the 
electronic energy and 
associated coherences. This 
forms the system Hamiltonian 
of our OQS.

Molecules in the system of 
interest are free to interact 
with other particles, termed 
the environment/bath, as they 
would in experiments. This is 
described mathematically as a 
coupling HSB.

This system is then evolved through time in 
density matrix form. Further interactions are 
defined through introduction of the Lagrangian. 

Path integration splits the Lagrangians into 
exponentials of actions,2 corresponding to the 
influence of each component of the OQS on the 
classical trajectory. The memory of past states, 
through the infinite paths, are introduced but not 
resolved fully within the influence functional ℱ.

Take the influence functional and solve the 
constituent Euler-Lagrange equation of motion 
with a Green’s function to find the influence 
kernels, iL1 and L2. 

• Why do this? 
Solutions to the system of equations 
are stationary points of the action 
functional.  
• How does it work?  
An ODE is solved for a single point - 𝛅s. 
Superposition then creates the full 
solution.

We finally resolve individual memory components 
through a Matsubara decomposition, or contour 
integral. 

An equation for the ADOs is obtained, but to produce an equation 
of motion for the density matrix we must be able to traverse the 
hierarchy structure. Successively apply the chain rule and product 
rule to achieve ‘raising’ and ‘lowering’ terms. 

Termination5 upon 
reaching convergence 
parameter, ξ, at assumed 
Markovian limit

Fig 1: System-bath coupling schematic.

Fig 2: Memory effects schematic.

Fig 4: A complex contour in frequency space used to solve the 
correlation function. Residues of the poles correspond to 
Matsubara frequencies.

Fig 3: Schematic of 
a path integral. Left 
is a single 
trajectory, right the 
summation of 
many which – like a 
phase – produce a 
dominant 
contribution. 

Deriving Hierarchical Equations of Motion

Fig 5: An hierarchy diagram 
for the HEOM showing 
connections between 
ADOs. Grey nodes are 
termination ADOs, cyan 
lines move towards the 
density matrix, orange 
move away.
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Results: Correlation Functions of a Monomer

Fig 10: Wavepacket evolution for four different values of system and 
bath reorganisation energy.

• First Order
The ga

(1) tracks the population of the excited state 
when there is no bath. As bath reorganisation 
energy increases the rabi oscillations are damped 
more strongly. gb

(1) is constant in the steady state 
and without bath influence and increases linearly 
with system excited state displacement. 

• Second Order
ga

(2)  amplitudes are dependent on ga
(1) and, with  

the exception of 𝛈=0,  increase in damping with 𝛌.
ga

(2)  follows the same trend as its first order 
counterpart, but mode frequency is more evident. 
The cross correlation functions have the behaviour 
of the initial mode superimposed on the latter.

Fig 11: First order two-time correlation functions for photons and phonons

Fig 12: Second order two-time correlation functions for photons and phonons, and the two forms of the cross-correlation function.
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