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Summary
Here, we have developed a rigorous vibronic model evolved within a

non-Markovian bath and have shown how the contributions of the system

and environment can be studied separately using 2D spectroscopy. This

research was carried out on the HPC Cluster supported by the Research

and Specialist Computing Support service at UEA.
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Future Research
Further development is already underway, including:

• Extension to vibronic dimer systems and larger aggregates.

• Quantification of non-Markovianity and an analysis of its

relationship with the limits of spectral broadening.

• Inclusion of multi-coloured, variably polarised laser pulses.
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The vibronic system consists of a

ground, ۧ|g , and an excited, ۧ|e ,

electronic state separated by

ℏ𝜔eg
0 , with the two vibrational

modes approximated as harmonic

oscillators with the mass, mj,

frequency, 𝜔𝑗, momentum, pj, and

coordinate, qj. The excited state is

displaced by 𝑑𝑗, corresponding to a

change in its equilibrium position.
Fig 2: Potential energy surface for 

the two nuclear coordinates.

The action of the bath is to deform the

harmonic potential of the electronic excited

state. This causes the vibronic transition

frequencies to fluctuate, resulting in the

dephasing of vibrational wave packets.

Introduction

Ultrafast 2D spectroscopy is a valuable method for the study of

condensed phase dynamics as it provides time-resolved details of both

chemical structure and the interaction with the solvent environment.1

Studies of photosynthetic reaction centres have launched the debate

concerning the influence of intramolecular vibrations on the excited

electronic state, inspiring the development of models where a vibronic

Hamiltonian is introduced into an open quantum system approach.

Here, we combine a multimode vibronic model with the hierarchical

equations of motion, to provide a non-Markovian treatment of the

environment dynamics which correctly reproduces spectral broadening

through the incorporation of long-term memory effects. Our model is

applied to a perylene bisimide molecule, where two vibrational modes,

𝜔0 = 231 cm-1 and 𝜔1 = 550 cm-1, contribute to the vibronic

progression of the first absorption band.2

Fig. 1: (Left) Perylene bisimide chemical structure and (Right) linear 
absorption spectrum with labelled vibronic transitions.

Vibronic System

The model is constructed as an open quantum system, where the

total Hamiltonian is separated into the contribution of the system and

its interaction with a bath, representing the wider environment.

Bath of Harmonic Oscillators

The bath is defined as an infinite ensemble of harmonic oscillators,

accounting for all the intermolecular modes which compete with the

intramolecular vibrations. The coordinate of each bath oscillator, xα,

couples to the system coordinates through the operator B with

strength gα.
3

Fig 3: Diagrammatic representation 
of the deforming excited state 

potential energy surface.

The distribution of coupling strengths defines the spectral density,

J(ω), for which we assume the Debye form.

Fig 4: Bath induced fluctuation of the fundamental 
transition frequency.

Hierarchical Equations of Motion
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To a linear approximation, the system-

bath coupling is related to the effective

bath coordinate, X, from which we

obtain the bath correlation function,

C(t). This can be written as the sum of

exponential terms, with the Matsubara

frequencies, νk, and coefficients, ck.

From the correlation function we derive an hierarchy of equations of

motion, in terms of the auxiliary density operators (ADO), ρj(t), where

B×𝜌 denotes the commutator B, 𝜌 .4

Non-Markovianity

The Markovian limit defines the point at which the fluctuations of the

bath are so much faster than the oscillations of the system, all memory

of previous time steps is lost. By simultaneously propagating an

hierarchy of ADOs, the memory of the bath is preserved such that

information/energy transferred to the bath can be returned to the

system some time later.

Each ADO corresponds to faster fluctuations, allowing the hierarchy to

be terminated beyond a cut-off, Γ, defining the Markovian limit.5

Homogeneous vs. Inhomogeneous Broadening

Spectral broadening is a result of the speed and memory of the bath.

Fast bath fluctuations cause rapid perturbations, such that individual

system molecules cannot be distinguished during a measurement. This

leads to an averaging across the ensemble, equivalent to the loss of

memory, producing the Markovian/homogeneous limit. When the bath

fluctuations are much slower, differences across the ensemble can be

detected, producing an inhomogeneous distribution and a bath with a

well-defined memory, requiring non-Markovian methods.3

Fig 6: The origins of homogeneous and inhomogeneous broadening, shown via the change 

in excited state potential for two system molecules in a fast or slowly fluctuating bath.

Fig 5: Structure of the hierarchy of ADOs for two Matsubara frequencies. 

‖ = break in the axis, grey = terminators, blue = true density matrix.
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2D spectra are presented as

excitation, ωτ, vs. emission, ωt,

frequency. The location of peaks

provides insight into the

structure of the system, whilst

spectral line shape is a result of

the dephasing induced by the

solvent environment. Here, the

bath spectral density was defined

by 𝜂 = 10 cm-1 and 𝛾 = 60 cm-1.

Vibrational Coherences

Oscillations in the rephasing and

non-rephasing amplitude with

increasing population time identify

coherent oscillations within the

ground or excited state potential

energy surface, corresponding to

the intramolecular vibrations of the

system.

A third Fourier transform over T allows the frequencies contributing

to these oscillations to be separated and plotted as amplitude spectra.4
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2D Photon Echo Spectroscopy

2D spectroscopy is an ultrafast technique with sub-picosecond

resolution which involves the interaction of three laser pulses,

separated by the coherence, τ, and population, T, times, to generate a

third order polarisation, P(3)(τ,T,t), governed by the molecular

response function, R(3)(t1,t2,t3).

Fig 7: Pulse sequence and waiting times in 2D spectroscopy.

Fourier transform of the rephasing (ks = -k1+k2+k3) or non-rephasing

(ks = k1-k2+k3) polarisation in τ, t produces a 2D spectrum for each T.

Here we enforce the impulsive limit, assuming the pulses are infinitely

short, E(t) → δ(t), where ρ(-∞) is the equilibrium density matrix, Ƹμ is

the dipole moment operator of the system and ෡G (t1,t0) is the

hierarchical propagator from t0 to t1.6

Spectra and line shape

Any inhomogeneous broadening is observed as an elongation of

the peaks about the main diagonal.

Fig 9: Amplitude oscillation of rephasing 
(real) for the fundamental peak.

Amplitude Spectra

Fig 10: Predicted peak location
diagrams and amplitude
spectra for the two vibrational
modes, separated into positive
(blue) and negative (red)
oscillations for the rephasing
(left) and non-rephasing (right)
spectra. Triangles and squares
correspond to ground state
bleach and stimulated
emission coherence pathways,
respectively.

Analysis of all the

Liouville pathways

predicts a ‘chair’

arrangement of

peaks, which can be

observed for both

vibrational modes.4

The third Fourier

transform separates

positively, 𝑒+𝑖𝜔0𝑇 ,

and negatively,

𝑒−𝑖𝜔0𝑇 , oscillating

pathways.

Fig 8: Normalised rephasing (real) 
spectrum for T = 100 fs.


